Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
J Biomed Opt ; 29(6): 066002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745984

ABSTRACT

Significance: Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim: We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach: We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results: The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions: The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Artifacts , Reproducibility of Results , Signal-To-Noise Ratio
2.
Int J Ophthalmol ; 17(3): 528-536, 2024.
Article in English | MEDLINE | ID: mdl-38721515

ABSTRACT

AIM: To evaluate the effectiveness and safety of early lens extraction during pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR) compared to those of PPV with subsequent cataract surgery. METHODS: This multicenter randomized controlled trial was conducted in three Chinese hospitals on patients with PDR, aged >45y, with mild cataracts. The participants were randomly assigned to the combined (PPV combined with simultaneously cataract surgery, i.e., phacovitrectomy) or subsequent (PPV with subsequent cataract surgery 6mo later) group and followed up for 12mo. The primary outcome was the change in best-corrected visual acuity (BCVA) from baseline to 6mo, and the secondary outcomes included complication rates and medical expenses. RESULTS: In total, 129 patients with PDR were recruited and equally randomized (66 and 63 in the combined and subsequent groups respectively). The change in BCVA in the combined group [mean, 36.90 letters; 95% confidence interval (CI), 30.35-43.45] was significantly better (adjusted difference, 16.43; 95%CI, 8.77-24.08; P<0.001) than in the subsequent group (mean, 22.40 letters; 95%CI, 15.55-29.24) 6mo after the PPV, with no significant difference between the two groups at 12mo. The overall surgical risk of two sequential surgeries was significantly higher than that of the combined surgery for neovascular glaucoma (17.65% vs 3.77%, P=0.005). No significant differences were found in the photocoagulation spots, surgical time, and economic expenses between two groups. In the subsequent group, the duration of work incapacity (22.54±9.11d) was significantly longer (P<0.001) than that of the combined group (12.44±6.48d). CONCLUSION: PDR patients aged over 45y with mild cataract can also benefit from early lens extraction during PPV with gratifying effectiveness, safety and convenience, compared to sequential surgeries.

3.
Science ; 384(6696): eadf8458, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723072

ABSTRACT

Phonons play a crucial role in many properties of solid-state systems, and it is expected that topological phonons may lead to rich and unconventional physics. On the basis of the existing phonon materials databases, we have compiled a catalog of topological phonon bands for more than 10,000 three-dimensional crystalline materials. Using topological quantum chemistry, we calculated the band representations, compatibility relations, and band topologies of each isolated set of phonon bands for the materials in the phonon databases. Additionally, we calculated the real-space invariants for all the topologically trivial bands and classified them as atomic or obstructed atomic bands. We have selected more than 1000 "ideal" nontrivial phonon materials to motivate future experiments. The datasets were used to build the Topological Phonon Database.

4.
Front Pediatr ; 12: 1369787, 2024.
Article in English | MEDLINE | ID: mdl-38650993

ABSTRACT

Background: Neuroglial heterotopia is a rare lesion composed of differentiated neuroectodermal cells that manifest in extracranial locations, with the majority of cases predominantly occurring in the head and neck region. Retroperitoneal neuroglial heterotopia is exceptionally rare, with isolated cases published in the scientific literature. Case report: Here, we present the case of a 3-year-old girl who was admitted without clinical signs but presented with a palpable abdominal mass. Ultrasonography and computed tomography scans revealed a sizable cystic lesion within the retroperitoneal space. Subsequently, laparoscopic resection was performed. Histological examination unveiled neuroglial cell-lined cysts encompassing fibrous connective tissue, ganglia, glial tissue, and nerve bundles. Notably, distinct areas and cell types exhibited expression of S100, glial fibrillary acidic protein, and neuron-specific enolase. Follow-up assessments revealed no relapses or late complications. Conclusion: In cases of retroperitoneal neuroglial heterotopia, most children may remain asymptomatic without any congenital anomalies. Despite their detectability through imaging, accurate preoperative diagnosis is seldom achieved. Generally, a favorable prognosis follows complete surgical resection, although further cases are required to confirm its long-term efficacy, necessitating extended follow-up for verification.

5.
Alzheimers Res Ther ; 16(1): 71, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38576025

ABSTRACT

BACKGROUND: The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS: In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS: Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS: These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.


Subject(s)
Alzheimer Disease , Glymphatic System , Niacinamide/analogs & derivatives , Thiadiazoles , Mice , Animals , Alzheimer Disease/pathology , Brain/metabolism , Glymphatic System/metabolism , tau Proteins/metabolism
6.
Infect Drug Resist ; 17: 927-934, 2024.
Article in English | MEDLINE | ID: mdl-38481654

ABSTRACT

Purpose: To explore the effect of coronavirus disease 2019 (COVID-19) infection on neonates in plateau regions. Methods: Cases of newborns born to pregnant women infected with COVID-19 who received prenatal care or treatment at the Women and Children's Hospital of the Tibet Autonomous Region and the Lhasa People's Hospital between January 2020 and December 2022 (infected group) and newborns born to healthy pregnant women (non-infected group) who were included by age, underlying disease and length of hospital stay were retrospectively collected. According to the inclusion and exclusion criteria, 381 patients in the infected group and 314 patients in the non-infected group were included in the study. Results: The results of multivariate analysis showed that admission to the neonatal intensive care unit (OR = 3.342, 95% CI = 1.564-6.764), shortness of breath (OR = 2.853, 95% CI = 1.789-3.154), irregular breathing (OR = 2.465, 95% CI = 1.879-4.112) and neonatal jaundice (OR = 2.324, 95% CI = 1.989-2.445) were the factors influencing the low Apgar scores of neonates in the infected group (all P < 0.05). Conclusion: Neonates born to pregnant women infected with COVID-19 had lower Apgar scores and higher incidences of complications, such as shortness of breath, groaning, irregular breathing and neonatal jaundice, than newborns born to pregnant women not infected with COVID-19.

7.
Front Neurosci ; 18: 1331677, 2024.
Article in English | MEDLINE | ID: mdl-38384484

ABSTRACT

Background: Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN). Methods: Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach. Results: The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping. Conclusion: In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.

8.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303097

ABSTRACT

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Subject(s)
Deep Learning , Retinal Degeneration , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology , Tomography, Optical Coherence/methods , N-Methylaspartate/toxicity , Rats, Long-Evans , Retina/pathology , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology
9.
Foods ; 13(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38201202

ABSTRACT

Different structural composition ratios of sucrose stearates with hydrophilic-hydrophobic balance (HLB) values ranging from 1 to 16 on lipolysis in emulsion were investigated using a simulated gastrointestinal tract (GIT). Results showed a direct correlation between the HLB values of sucrose stearates and the lipolysis rate of emulsions, and a lower HLB value led to diminished lipolysis in the GIT simulation model. Mechanism study indicated that poor emulsifying capacity of sucrose stearates and lipolysis of sucrose stearates with lower HLB value inhibited the digestive behavior of oil. In addition, monoester was mainly hydrolyzed in the gastric phase, whereas sucrose polyesters caused lipolysis in the intestinal phase using an in vitro digestive model and HPLC analysis, further suppressing lipid digestion. Furthermore, a decrease in cell cytotoxicity and proinflammatory effects on Caco-2 and Raw264.7 were observed post-digestion, respectively. This work offers important insights into the effects of the degree of esterification of sucrose stearate on lipid digestion behavior in oil-in-water emulsions.

10.
Chem Commun (Camb) ; 60(9): 1180-1183, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38193867

ABSTRACT

Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.

11.
J Med Chem ; 67(3): 2176-2187, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284525

ABSTRACT

Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.


Subject(s)
Catenanes , Neuromuscular Blockade , gamma-Cyclodextrins , Adult , Humans , Animals , Rats , Sugammadex/pharmacology , Rocuronium
12.
J Org Chem ; 89(2): 1220-1227, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38152030

ABSTRACT

The synthesis of chroman-3-ol derivatives via intramolecular nucleophilic additions has been established. Aldehydes can be used as alkyl carbanion equivalents via reductive polarity reversal which is facilitated by a copper catalyst and N-heterocyclic carbene ligand under mild conditions. The key to success is the difference in reaction activity between aldehydes and ketones. Finally, this methodology also can be used to construct other cyclic structures containing tertiary alcohols including tetraline, cyclohexane, indan, and 9,10-dihydrophenanthrene.

13.
J Alzheimers Dis ; 97(1): 459-469, 2024.
Article in English | MEDLINE | ID: mdl-38143361

ABSTRACT

BACKGROUND: Prognosis of future risk of dementia from neuroimaging and cognitive data is important for optimizing clinical management for patients at early stage of Alzheimer's disease (AD). However, existing studies lack an efficient way to integrate longitudinal information from both modalities to improve prognosis performance. OBJECTIVE: In this study, we aim to develop and evaluate an explainable deep learning-based framework to predict mild cognitive impairment (MCI) to AD conversion within four years using longitudinal whole-brain 3D MRI and neurocognitive tests. METHODS: We proposed a two-stage framework that first uses a 3D convolutional neural network to extract single-timepoint MRI-based AD-related latent features, followed by multi-modal longitudinal feature concatenation and a 1D convolutional neural network to predict the risk of future dementia onset in four years. RESULTS: The proposed deep learning framework showed promising to predict MCI to AD conversion within 4 years using longitudinal whole-brain 3D MRI and cognitive data without extracting regional brain volumes or cortical thickness, reaching a balanced accuracy of 0.834, significantly improved from models trained from single timepoint or single modality. The post hoc model explainability revealed heatmap indicating regions that are important for predicting future risk of AD. CONCLUSIONS: The proposed framework sets the stage for future studies for using multi-modal longitudinal data to achieve optimal prediction for prognosis of AD onset, leading to better management of the diseases, thereby improving the quality of life.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Quality of Life , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Cognitive Dysfunction/diagnostic imaging
14.
Chem Commun (Camb) ; 59(95): 14161-14164, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37955311

ABSTRACT

This paper describes the design and synthesis of a conjugate, which is composed of a percarboxylated water-soluble pillar[6]arene and three fluorescent pyrene chromophores on alternating methylene bridges. The optical characteristics are investigated. This conjugate is capable of encapsulating polycationic guest spermine, which results in an enhancement in the fluorescence intensity of pyrene. This host-pyrene conjugate is used for direct sensing of spermine, which shows selectivity towards a variety of biological analytes. The detection of spermine is demonstrated in live cells.

15.
Invest Ophthalmol Vis Sci ; 64(14): 6, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37930688

ABSTRACT

Purpose: The purpose of this study was to demonstrate the utility of polarization-diversity optical coherence tomography (PD-OCT), a noninvasive imaging technique with melanin-specific contrast, in the quantitative and qualitative assessment of choroidal nevi. Methods: Nevi were imaged with a custom-built 55-degree field-of-view (FOV) 400 kHz PD-OCT system. Imaging features on PD-OCT were compared to those on fundus photography, auto-fluorescence, ultrasound, and non-PD-OCT images. Lesions were manually segmented for size measurement and metrics for objective assessment of melanin distributions were calculated, including degree of polarization uniformity (DOPU), attenuation coefficient, and melanin occupancy rate (MOR). Results: We imaged 17 patients (mean age = 69.5 years, range = 37-90) with 11 pigmented, 3 non-pigmented, and 3 mixed pigmentation nevi. Nevi with full margin acquisition had an average longest basal diameter of 5.1 mm (range = 2.99-8.72 mm) and average height of 0.72 mm (range = 0.37 mm-2.09 mm). PD-OCT provided clear contrast of choroidal melanin content, distribution, and delineation of nevus margins for melanotic nevi. Pigmented nevi were found to have lower DOPU, higher attenuation coefficient, and higher MOR than non-pigmented lesions. Melanin content on PD-OCT was consistent with pigmentation on fundus in 15 of 17 nevi (88%). Conclusions: PD-OCT allows objective assessment of choroidal nevi melanin content and distribution. In addition, melanin-specific contrast by PD-OCT enables clear nevus margin delineation and may improve serial growth surveillance. Further investigation is needed to determine the clinical significance and prognostic value of melanin characterization by PD-OCT in the evaluation of choroidal nevi.


Subject(s)
Choroid Neoplasms , Nevus, Pigmented , Nevus , Skin Neoplasms , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Tomography, Optical Coherence , Melanins , Nevus, Pigmented/diagnostic imaging , Nevus/diagnostic imaging , Choroid Neoplasms/diagnostic imaging
16.
mSystems ; 8(6): e0033123, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37855616

ABSTRACT

IMPORTANCE: Elevated blood pressure affects 40% of the adult population, which accounts for high cardiovascular disease risk and further high mortality yearly. The global understanding of the gut microbiome for hypertension may provide important insights into the prevention. Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 originated from human breast milk, were able to decrease blood pressure, and modified metabolites in a high fructose-induced elevated blood pressure mouse model. Moreover, we found there was a close relationship between unexplored gut microbes and elevated blood pressure. Also, subsequently, the cross-link was explored among gut microbes, metabolites, and some metabolic pathways in gut microbial environment through introducing novel prediction methodology and bioinformatic analysis. It allowed us to hypothesize that probiotics can prevent elevated blood pressure via gut microbiota and related metabolism.Thus, utilization of dietary strategies (such as probiotics) to maintain the blood pressure level is of crucial importance.


Subject(s)
Bifidobacterium animalis , Gastrointestinal Microbiome , Hypertension , Lacticaseibacillus rhamnosus , Probiotics , Adult , Mice , Animals , Female , Humans , Probiotics/therapeutic use , Hypertension/prevention & control
17.
Chempluschem ; 88(11): e202300465, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37752086

ABSTRACT

New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.

18.
Neurobiol Dis ; 187: 106310, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37769746

ABSTRACT

INTRODUCTION: This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). METHODS: This analysis consisted of 150 normal controls (CN), 257 MCI, and 205  AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. RESULTS: Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. DISCUSSION: Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.

19.
Phys Rev Lett ; 131(7): 076601, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656837

ABSTRACT

Berry curvature and skew scattering play central roles in determining both the linear and nonlinear anomalous Hall effects. Yet in PT-symmetric antiferromagnetic metals, Hall effects from either intrinsic Berry curvature mediated anomalous velocity or the conventional skew-scattering process individually vanish. Here we reveal an unexpected nonlinear Hall effect that relies on both Berry curvature and skew-scattering working in cooperation. This anomalous skew-scattering nonlinear Hall effect (ASN) is PT even and dominates the low-frequency nonlinear Hall effect for PT-symmetric antiferromagnetic metals. Surprisingly, we find that in addition to its Hall response, ASN produces helicity dependent photocurrents, in contrast to other known PT-even nonlinearities in metals that are helicity blind. This characteristic enables us to isolate ASN and establishes new photocurrent tools to interrogate the antiferromagnetic order of PT-symmetric metals.

20.
J Mater Chem B ; 11(37): 9027-9034, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37721029

ABSTRACT

Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.


Subject(s)
Photochemotherapy , Animals , Humans , Mesoporphyrins , HeLa Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...